
makemake

MY RUST IS SHIT!
A rant about rust idioms that make me go :-(



:333

• Hiiiii my name is makemake and I write 
code :33<


• Most of you know how to code, but do you 
know how to write code?


• We’re going to be doing some introspection 
and look at rust coding conventions and 
challenge them.


• This is a nice way of me saying that this is 
essentially a group therapy session about 
bad rust code practices I personally dislike.


• Enjoy :D



THIS IS NOT 
ABOUT “CLEAN 
CODE”
Clean code is a psyop to 
make you write dog water 
code.



Theres nuance to everything!



What is rustic?



Do things the rust way

• Being rustic is about doing things 
in a rust specific way.


• Think about how you write and 
develop rust vs c/c++/whatever…


• You have:


• Cargo, traits, borrowing, 
combinators, package 
management, no OOP slop, 
macros, etc…

Crab like thing on the bottom from Metroid this image is very relevant to rust 
idk what you mean



Rust is really good!

• Rust flexible, rust good.


• This is a double edged sword as 
it ends up being abused.


• Rust is imperative, and IMO 
should be written like an 
extension to C.



How 2 rust (imo 
dont crucify me)
But first, a short view back 
to the past…



Borrow checker & 
memory safety

• The borrow checker exists!


• Memory safety is a thing!


• It prevents us from being stupid 
with memory.


• It influences how we write code!



Lets look at a c example

• Look at how much heavy lifting 
we have to do to get a memory 
safe equivalent :O


• This is because of iterators!



Iterators
The best thing since sliced bread

• Iterators return the next item in 
an array and `None` when empty.


• THIS IS VERY POWERFUL!


• THIS IS ALSO HOW ASYNC 
WORKS!


• It allows us to write funny 
constructions with…



Combinators
Or how I learned to start worrying 
about .iter_into().map().zi
p().enumerate().filter().f
lat_map().chain().scan().t
ake_while().collect().iter
().for_each() during code 
review



They’re cleaner!



They can be cleaner!

• Yes, they can, if you use them 
properly.


• Look at this, clean, simple, 
elegant!



But they’re often not…

• Do you have eyes???


• The code you see runs!!!


• I HAVE SEEN SIMILAR CODE IN 
PRODUCTION. SHIT LIKE THIS 
GETS MERGED!!!!



They’re faster!



How? Why? Hello??

What!?



Compilers are very powerful

• The closest we have to AGI are 
modern compilers.


• They optimize pretty much 
everything that doesn’t change 
your code semantics 
(unnecessary clones will still 
happen!)


• Combinators have slightly 
different semantics but its mostly 
irrelevant here.



Do not fall for the 
ffmpeg 
propaganda!
You can not write better 
assembly than the compiler. 
Affirm.



They’re rustic!



Is rustic code always good?

• No!


• You shouldn’t write code that is 
bad, slow, or illegible in a rust 
way when you can do it better in 
a non rust way.



When should you not use 
combinators?

• Your looping has side effects.


• You need to handle non trivial 
errors and propagate them 
upwards


• You have to use really long 
combinator chains for your 
desired effects.


• When they look weird :/

Attention grabbing image



Wen combinator ser?

• Code that only affects the thing ur 
directly interacting with.


• Small interaction chains that do a 
“one-liner”.


• Combinator chains get 
exponentially hard to reason 
about when you start adding 
more of them.


• Remember, this is just my 
opinion. Go wild.



You know what 
grinds my gears?
When people write rust like 
java.



Write once, run away

• Using Java for serious jobs is like 
trying to take the skin off a rice 
pudding wearing boxing gloves.


• If you think applying java 
programming idioms to other 
languages is a good idea, please 
stop programming.



Traits != interfaces

• Java interfaces and traits are 
similar in functionality.


• Rust is not OOP!


• Traits are just markers to tell the 
compiler about function 
signatures and what u need for 
the output.


• You will pay the price of trying to 
make everything generic 
eventually…



Trait fuckery

• To see how traits can go wrong, 
lets implement some!


• We’re going to implement a 
basic trait for some object!



Womp womp



Wat do???



The heap makes me sad

• The heap is slow and we want to 
avoid it.


• Thankfully we can if we specify 
the types of everything at 
compile time.


• If everything is sized we don’t 
need to box. Neat.



Shits fugged m8



Is there a cure?



“Sometimes the clean, 
elegant implementation 
is just a function. Not a 
method. Not a class. 
Not a framework. Just 
a function.”
- John Carmack, legendary 
programmer and founder of 
id software



Thank you!
Thoughts? Opinions? Questions?

Blog with all my socials! Twitter


