MY RUST IS SHIT!

A rant about rust idioms that make me go :-(

makemake

1333

code :33<

 Most of you know how to code, but do you
know how to write code?

 We’re going to be doing some introspection
and look at rust coding conventions and
challenge them.

* This is a nice way of me saying that this is
essentially a group therapy session about
bad rust code practices | personally dislike.

 Enjoy :D

THIS IS NOT
ABOUT “CLEAN
CODFE”

Clean code is a psyop to
make you write dog water
code.

Theres nuance to everything!

A GOOD BOOK CAN CHANGE YOUR LIFE.

What is rustic?

Do things the rust way

* Being rustic is about doing things
IN a rust specific way.

* Think about how you write and
develop rust vs c/c++/whatever...

* You have:

» Cargo, traits, borrowing,
combinators, package
management, no OOP slop,
macros, etc...

Crab like thing on the bottom from Metroid this image is very relevant to rust
iIdk what you mean

Rust is really good!

* Rust flexible, rust good.

 This is a double edged sword as — i
It ends up being abused. 'powea of GOD Anp

ANIME ON My sIDE

* Rust is imperative, and IMO
should be written like an
extension to C.

How 2 rust (imo
dont crucify me)

But first, a short view back
to the past...

Borrow checker &
memory safety

fn main() {
let mut numbers = vec!/[1, 2, 3, 4, 5];

e The borrow checker exists!

// Immutable iterator chain
. - A numbers. iter()
Memory safety is a thing! e (Ix| X * 2)
. for_each(|x| println!("Double: {}", x));

* |t prevents us from being stupid

' Mutable iterat
with memory_ // Mutable iterator

numbers. iter mut()
.for_each(|x]| *x x= 3);

® . . '
It influences how we write code! println!("After tripling: {:?}", numbers);

Lets look at a ¢ example

#include <stdio.h>

int main() {

* ook at how much heavy lifting int nunbers(] = {1, 2, 3, 4, 5);

int length = sizeof(numbers) / sizeof(numbers[@]); // pray we get this right

We have tO do tO get a memory // "Safe" iteration (trust me bro)

for(int i = @; i < length; i++) { // hopefully i doesn't overflow

Safe eqUivaIent .O printf("Double: %d\n", numbers[i] * 2); // assumes multiplication doesn't overflow

}

// Modifying values (what could go wrong?)
for(int i = @; i < length; i++) { // fingers crossed we don't go out of bounds

e This is because of iterators! numbersi]l 4= 3; // more overflow possibilitiss, wheee

}

printf("After tripling: [");
for(int i = 0; i < length; i++) {

printf("%d%s", numbers[i], i < length — 1 2 ", " : "");
}

printf("1\n");

return @; // we made it! §

}

Iterators

The best thing since sliced bread

e |terators return the next item In
an array and None when empty. trait Iterator {

type Item;

« THIS IS VERY POWERFUL!
// Requilired method

e THIS IS ALSO HOW ASYNC fn next(& self) —> Option<Self::Item>;
WORKS!

|t allows us to write funny
constructions with...

Combinators

Or how | learned to start worrying

about .1ter into().map().zi
p().enumerate().fi1lter().f
lat map().chain().scan().t
ake while().collect().1ter
().for each() during code

review

g LA A o0 £ WHO SAY RUST IS FUNCTIONAL

They’re cleaner!

They can be cleaner!

* Yes, they can, if you use them
properly.)

let raw_data = vec!’/["1", "2", "invalid", "4", "5", "bad", "7"];

. . let 1 132 = _data.iter()
o LOOk at thIS, Clean, Slmple,) ??T'Ltér“_map'(-?:l as‘.;a)all'sc%:'r::<i32>().ok()) // convert strings to numbers, skip invalid

.filter(|&n] n > 3) // keep numbers > 3

elegant! .fold(@, |acc, x| acc + x); // sum them up

println!("Sum of numbers > 3: {}", sum); // prints: Sum of numbers > 3: 16

}

But they’re often not...

fn main() {

et DO yOU have eyeS??? let numbers = vec!/[1, 2, 3, 4, 5];

numbers.iter()
.zip(numbers.iter().skip(1)) // pairs of adjacent numbers

. , b b h '
 The code you see runs!!! e /ot imties.
filter(|(i, x)| x % 2 == @) // only even sums
.flat_map(|(i, x)| vec!/[i as i32, x].into_iter()) // flatten index and value

.chain(std::iter::once(42)) // yeet a 42 at the end
o I HAVE SEEN SIMILAR CODE IN .scan(0@, |state, x| { // running total because why not

*state += X;

PRODUCTION. SHIT LIKE THIS Sorestate _
GETS MERGED!!I e e s

.iter()
.for_each(|x| println!("@ {}", x)); // print with emoji because we're fancy

They're faster!

What!?

Compilers are very powerful

e The closest we have to AGI are
modern compilers.

* They optimize pretty much
everything that doesn’t change
your code semantics
(unnecessary clones will still
happen!)

 Combinators have slightly
different semantics but its mostly
Irrelevant here.

Do not fall for the
ftTmpeg
propaganda!

You can not write better

assembly than the compiller.
Affirm.

They’re rustic!

[|
? // Find most frequent number and its neighbors - basic edition
S rus Ic CO e a wayS goo = fn simple_way(nums: &[i32]) —> Option<(i32, Vec<i32>)> {
let max_count = 0;
let most_common = None;

// Find the most common number
for &num in nums {
let count = nums.iter().filter(|&8x| x == num).count();
if count > max_count {
max_count = count;
most_common = Some(num);

}

// Get its neighbors
most_common.map(|n| {
let neighbors = nums.windows(3)

° NO' filter(|w| wl1] = n)
5 .map(|w| vec!Iwl0], wl2]])
.next()
.unwrap_or_default();
(n, neighbors)

})
}

* You shouldn’t write code that Is e

fn spicy_way(nums: &[i32]) —> Option<(i32, Vec<i32>)> {

bad, slow, or illegible in a rust o

.zip(
std::iter::repeat(nums)

way when you can do it better in)

.map(|(num, slice)| {

a non ru St Way- e suc?.fifgf‘h&&ﬂ X == num)

.count())
})
.fold(
std::collections: :HashMap::<i32, usize>::new(),
| acc, (num, count)| {
acc.entry(num)
.and_modify(|e| xe = (xe).max(count))
.or_insert(count);
acCcC
}
)
.into_iter()

.max_by_key(](_, count)| *count)
.and_then(|(num, _)| {
nums.windows(3)
filter(|w| wll]l == num)
.next()
.map(|w| (
num,
vec![wlo]l, wl2]]
))
})

When should you not use
combinators?

* Your looping has side effects.

* You need to handle non trivial
errors and propagate them
upwards

* You have to use really long
combinator chains for your
desired effects.

 When they look weird :/

Attention grabbing image

Wen combinator ser?

* Code that only affects the thing ur
directly interacting with.

e Small interaction chains that do a
“one-liner”.

 Combinator chains get
exponentially hard to reason
about when you start adding
more of them.

* Remember, this is just my
opinion. Go wild.

You know what
grinds my gears?

When people write rust like
java.

Write once, run away

* Using Java for serious jobs is like
trying to take the skin off a rice
pudding wearing boxing gloves.

* |f you think applying java
programming idioms to other
languages Is a good idea, please
stop programming.

” EVIL EDITION

Traits != interfaces

YO DAWH I HEARD YOU LIKE GENERI

‘Qr§'

5

e Java interfaces and traits are '
similar in functionality.

-
2%

e Rust is not OOP!

* T[raits are just markers to tell the
compiler about function

signatures and what u need for 90 | ADDED TRAITS l“"ns
the output. fgn YOUR TRAIT I}IIIIIIII T!m" BOUNDS

* You will pay the price of trying to
make everything generic
eventually...

Trait fuckery

* [o see how traits can go wrong,
lets Implement some!

trait Description {

* We're going to implement a fn describe(&self) —> String;

basic trait for some object! }

Womp womp

trait Named {
fn name(&self) —> String;
}

struct Service {
named: Named

}

Wat do???

trait Description {
fn describe(&self) —> String;

}

struct Thing {
obj: Box<dyn Description>,
+

The heap makes me sad

trait Description {

e The heap is slow and we want to fn describe(&self) -> String;
avoid it. }
* Thankfully we can if we specify struct Thing<T>
the types of everything at where
compile time. T: Description
{
* |f everything is sized we don'’t obj: T,

need to box. Neat. }

Shits fugged m8

// Implementation with even more bounds #[derive(Debug, Clone)]
impl<'a, T, U> Thing<'a, T, U> struct Cat {
where name: String,
T: Description + std::fmt::Display, }
U: AsRef<str> + std::fmt::Debug,
{ impl Description for Cat {

fn describe(&self) — String {

it ngz{gb%. &'a T, label: &'a U) —> Self { format!("Cat named {}", self.name)
: }
obj,
label, fn compare<'a, U>(&'a self, other: &'a U) —> String
tags: Vec::new(), T
} U: Description + 'a,
} {
format!("{} vs {:?}", self.name, other)
fn with_tag(mut self, tag: &'a str) —> Self { }
self.tags.push(tag); }
self , ,
} impl std::fmt::Display for Cat {
fn fmt(&self, f: &mut std::fmt::Formatter<' >) —> std::fmt::Result {
. ; y
fn describe_all<V>(&self, other: &'a V) —> String } Al ol eliehEl
where }
V: Description + std::fmt::Debug,
{ fn main() {
format!(let cat = Cat { name: "Whiskers".to_string() };
"Thing labeled {:?} with tags {:?}:\n{}\nCompared to:\n{}", let cat2 = Cat { name: "Mittens".to_string() };
self.label.as_ref(), let label = "my-cat";
self.tags, . .
self.obj.describe(), let thing = Thing::new(&cat, &label)

.with_tag("cute")

self.obj.compare(other) with_tag("fluffy");

} println!("{}", thing.describe_all(&cat2));

' X

|s there a cure?

“Sometimes the clean,
elegant implementation
Is just a function. Not a
method. Not a class.
Not a framework. Just
a function.”

- John Carmack, legendary
programmer and founder of
Id software

Thank you!

Thoughts? Opinions? Questions?

o

Blog with all my socials!

