
makemake

What the huff
Adding 2 and 2 together



What is huff

• Huff is a low-level programming language for creating highly optimized smart 
contracts on the EVM.


• Huff does not hide the inner workings of the EVM and instead exposes its 
programming stack to the developer for manual manipulation.



1) What

• Huff code looks like this.


• If it looks like evm 
bytecode, that’s because it 
is! Huff is essentially what 
we call an assembler.


• What is an assembler?



What is the evm



Understanding the EVM

• The Ethereum Virtual Machine 
(EVM) is the computation engine 
behind Ethereum, similar to virtual 
machines in Microsoft's .NET 
Framework or interpreters for 
bytecode-compiled languages like 
Java.


• The EVM manages the deployment 
and execution of smart contracts, 
acting as a global decentralized 
computer with each contract 
having its own permanent data 
store.



• The EVM operates as a stack machine with a depth of 1024 items, each being 
a 256-bit word (32 bytes) compatible with 256-bit encryption. It uses stack 
operations like PUSH, POP, and applies instructions such as ADD and MUL to 
the top values.





Memory grindset

• Memory in the EVM is an 
expandable, byte-addressed, 
1D array that starts empty and 
costs gas to read, write, and 
expand. Calldata, included in 
the transaction's payload, is 
similar but cannot be 
expanded or overwritten. Both 
read and write operations 
access or modify the first 256 
bits (32 bytes) after a given 
pointer. Memory and calldata 
are volatile, being forgotten 
after the transaction finishes.



Storage

• Contract accounts on Ethereum store 
data persistently in a key-value store.


• Contract storage is more expensive to 
read and write than memory because 
all Ethereum nodes must update the 
contract's storage trie after a 
transaction.


• Storage can be viewed as a 256-bit to 
256-bit map with 2^256 slots, unlike 
memory which is a large 1-dimensional 
array.



Storage example



Back to huff



What the sigma

• Lets look at a basic huff contract:





ABI declaration

• If you're familiar with higher-level languages like Solidity or Vyper, you know 
about defining "external" or "public" functions to interact with contracts 
externally via an ABI (Application Binary Interface).


• Huff works similarly, allowing you to declare functions that appear in the ABI 
at the top of the file.



Main!

• The MAIN directive is annotated with takes(0) returns(0), indicating it takes 
nothing from the stack and returns nothing, as the stack is empty when 
entering the contract and nothing is left on completion.



Modifying our contract to accept external function calls

• To accept external calls for multiple functions, extract the addTwo logic into another macro and convert the 
MAIN macro into a function dispatcher.


• Modify the ADD_TWO macro by shifting the calldata offset by 4 bytes for both numbers to account for the 
4-byte function selector.


• The MAIN macro's first 4 lines isolate the function selector from calldata:


• 0x00 pushes [0] onto the stack.


• calldataload takes [0] as input and pushes the first 32 bytes of calldata onto the stack.


• 0xE0 pushes [224] onto the stack, representing 256 bits - 32 bits (28 bytes).


• shr shifts out calldata by 28 bytes, placing the function selector onto the stack.


• Subsequent lines match the function selector on the stack and jump to the appropriate code location, with 
Huff handling the jump logic. The ADD_TWO() macro bytecode is inlined in the main macro.



We’re so back



thanks;


