What the huft

Adding 2 and 2 together

UELCGNELG

What is huff

 Huff is a low-level programming language for creating highly optimized smart
contracts on the EVM.

 Huff does not hide the inner workings of the EVM and instead exposes its
programming stack to the developer for manual manipulation.

1) What

e Huff code looks like this.

#inc lude "huffmate/utils/Errors.huff"

e |fitlooks like evm
bytecode, that’s because it #defjjelzzﬁfs’zz‘z;ﬂo(_;'=b;akes (2) returns (1) {
Is! Huff is essentially what add // Ta + b]
we call an assembler. // Return Stack: [a + bl

}

o What |S an assembler? #[calldata("0x0001"), value
#define test MY_TEST() = {
0x00 calldataload // [0x01]
callvalue // [0x01, 0x01]
eq ASSERT()

What is the evm

YOU WERE SUPPOSED TO DESTROY
HUFF

NOT USEIT

WELCEINEUE .0rg

Understanding the EVM

 The Ethereum Virtual Machine
(EVM) is the computation engine
behind Ethereum, similar to virtual
machines in Microsoft's .NET
Framework or interpreters for

bytecode-compiled languages like | Pc |

Java. ‘

* The EVM manages the deployment
and execution of smart contracts,
acting as a global decentralized
computer with each contract
having its own permanent data
store.

|
|
B Message call

Storage

References : [E1] Ch.5, Ch.9, Appendix G

 The EVM operates as a stack machine with a depth of 1024 items, each being
a 256-bit word (32 bytes) compatible with 256-bit encryption. It uses stack

operations like PUSH, POP, and applies instructions such as ADD and MUL to
the top values.

imoflip com

Memory grindset

* Memory in the EVM is an
expandable, byte-addressed, ©dress (oyte addressng) s
1D array that starts empty and [8 1 0 2 8 S—
costs gas to read, write, and

expand. Calldata, included in |
256-bit load (MLOAD)

the transaction’s payload, Is 256-bit store (MSTORE)
similar but cannot be
expanded or overwritten. Both MSE LS8
- -]
read and write operations

access or modify the first 256
bits (32 bytes) after a given
pointer. Memory and calldata
are volatile, being forgotten
after the transaction finishes.

EVM is big endian order (network byte order).

Storage

e Contract accounts on Ethereum store
data persistently in a key-value store.

 Contract storage is more expensive to
read and write than memory because
all Ethereum nodes must update the
contract's storage trie after a
transaction.

e Storage can be viewed as a 256-bit to
256-bit map with 27256 slots, unlike
memory which is a large 1-dimensional
array.

Contract account

Account state

balance

storage hash

code hash

\‘38

- _Storage
~4

Storage example

PUSH20 OxdEaDbEeFdEaDbEeFdEaDbEeFdEaDbEeFdEaDbEeF //
PUSH1 0x00 //
SSTORE //

PUSH20 0xCOFFEE0000000000000000000000000000000000 //

PUSH1 0x01 //
SSTORE //
// Storage:

// 0x00 —> deadbeefdeadbeefdeadbeefdeadbeefdeadbeef
// O0x01 —> cOffeePD0000000000000000000000000000000

PUSH1 0x00
SLOAD
PUSH1 0x01
SLOAD

[dead_addr]
[0x00, dead addr]
[]

[coffee_addr]
[0x01, coffee_addr]

[]

// [dead_addr]

// [coffee_addr,

Back to huff

YOU[CANT BE'BAD/AT/CODING|

': -
. [&

. |n _
l. ’ & - l

- _ “v . o ‘

| &

<CIF°THE GODE CANT BE REARD

What the sigma

e | ets look at a basic huff contract:

#define function addTwo(uint256,uint256) view returns(uint256)
#define macro MAIN() = takes(@) returns(@) {

// Get the function selector
0x00

calldataload

OxEQ

shr

// Jump to the implementation of the ADD_TWO function
// if the calldata matches the function selector
__FUNC_SIG(addTwo) eq addTwo jumpi

addTwo:
ADD_TWO()
¥
#define macro ADD_TWO() = takes(@) returns(@) {
0x04 calldataload // load first 32 bytes onto the stack - number 1
0x24 calldataload // load second 32 bytes onto the stack — number 2
add // add number 1 and 2 and put the result onto the stack
0x00 mstore // place the result in memory
0x20 0x00 return // return the result

ABI declaration

* |f you're familiar with higher-level languages like Solidity or Vyper, you know
about defining "external” or "public" functions to interact with contracts

externally via an ABI (Application Binary Interface).

» Huff works similarly, allowing you to declare functions that appear in the ABI
at the top of the file.

#define function addTwo(uint256, uint256) view returns(uint256)

Main!

 The MAIN directive is annotated with takes(0) returns(0), indicating it takes
nothing from the stack and returns nothing, as the stack is empty when
entering the contract and nothing is left on completion.

#define macro MAIN() = takes(@) returns(@) {

0x00 calldataload // [numberl] // load first 32 bytes onto the stack - number 1

0x20 calldataload // [number2] // load second 32 bytes onto the stack - number 2

add // [numberl+number2] // add number 1 and 2 and put the result onto the stack
0x00 mstore // place [numberl + number2] in memory

0x20 0x00 return // return the result

Modifying our contract to accept external function calls

* Jo accept external calls for multiple functions, extract the addTwo logic into another macro and convert the
MAIN macro into a function dispatcher.

* Modify the ADD_TWO macro by shifting the calldata offset by 4 bytes for both numbers to account for the
4-byte function selector.

 The MAIN macro's first 4 lines isolate the function selector from calldata:
 0x00 pushes [0] onto the stack.
» calldataload takes [0] as input and pushes the first 32 bytes of calldata onto the stack.
* OxEO pushes [224] onto the stack, representing 256 bits - 32 bits (28 bytes).
* shr shifts out calldata by 28 bytes, placing the function selector onto the stack.

 Subsequent lines match the function selector on the stack and jump to the appropriate code location, with
Huff handling the jump logic. The ADD_TWO() macro bytecode is inlined in the main macro.

We're so back

#define function addTwo(uint256,uint256) view returns(uint256)
#define macro MAIN() = takes(@) returns(@) {

// Get the function selector
0x00

calldataload

OxEQ

shr

// Jump to the implementation of the ADD_TWO function
// if the calldata matches the function selector
__FUNC_SIG(addTwo) eq addTwo jumpi

addTwo:
ADD_TWO()
}
#define macro ADD_TWO() = takes(@) returns(0) {
0x04 calldataload // load first 32 bytes onto the stack — number 1
0x24 calldataload // load second 32 bytes onto the stack - number 2
add // add number 1 and 2 and put the result onto the stack
0x00 mstore // place the result in memory
0x20 0x00 return // return the result

